Όπως είναι γνωστό, το σύστημα των εξισώσεων του Maxwell έχει επίπεδες κυματικές λύσεις. Στη βιβλιογραφία του ηλεκτρομαγνητισμού (βλ., π.χ., [1], Κεφ. 10) οι ιδιότητες των λύσεων αυτών μελετώνται σχεδόν πάντα από τη σκοπιά του πρότυπου μονοχρωματικού επίπεδου ηλεκτρομαγνητικού κύματος (Η/Μ κύμα που περιέχει μία μόνο κυκλική συχνότητα ω). Όπως αποδεικνύεται, τόσο στο κενό, όσο και σε ένα μη-αγώγιμο μέσο, το ηλεκτρικό και το μαγνητικό πεδίο ενός μονοχρωματικού Η/Μ κύματος είναι κάθετα μεταξύ τους, όπως και κάθετα προς τη διεύθυνση διαδόσεως του κύματος (εγκάρσιο κύμα). Το ίδιο συμβαίνει και στην περίπτωση διάδοσης μονοχρωματικού Η/Μ κύματος στο εσωτερικό ενός αγώγιμου υλικού μέσου, με το πρόσθετο στοιχείο της απόσβεσης του κύματος καθώς αυτό προχωρεί [1].
Τώρα, ένα επίπεδο Η/Μ κύμα γενικότερης μορφής (δηλαδή, μη-μονοχρωματικό) μπορεί να εκφραστεί σαν γραμμικός συνδυασμός στοιχειωδών μονοχρωματικών κυμάτων με διάφορες συχνότητες ω. Όπως αποδεικνύεται [1,2], και στην γενική αυτή περίπτωση το ηλεκτρικό και το μαγνητικό πεδίο είναι κάθετα μεταξύ τους, όπως και κάθετα στη διεύθυνση διαδόσεως του κύματος, όταν το μέσο διάδοσης είναι μη-αγώγιμο και δεν προκαλεί διασπορά (non-dispersive medium).
Αυτό που έχει ιδιαίτερο ενδιαφέρον είναι ότι [2] στην περίπτωση μη-μονοχρωματικού Η/Μ κύματος που διαδίδεται σε αγώγιμο μέσο, το κύμα εξακολουθεί μεν να είναι εγκάρσιο αλλά το ηλεκτρικό και το μαγνητικό πεδίο δεν είναι πλέον κάθετα μεταξύ τους! Αυτό οφείλεται στο ότι ένα αγώγιμο μέσο προκαλεί διασπορά (dispersion) στα Η/Μ κύματα (βλ. [1], Παρ. 10.9).
Ανάλογες παρατηρήσεις ισχύουν και για μη-αγώγιμα υλικά μέσα όταν αυτά προκαλούν διασπορά των Η/Μ κυμάτων.
[1] Introduction to Electromagnetic Theory and the Physics of Conducting Solids (σε έντυπη μορφή, εδώ).
[2] Plane-wave solutions of Maxwell's equations: An educational note
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου